Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule.

نویسندگان

  • P Barone
  • A Batardiere
  • K Knoblauch
  • H Kennedy
چکیده

The directionality of corticocortical projections is classified as feedforward (going from a lower to higher hierarchical levels), feedback (interconnecting descending levels), and lateral (interconnecting equivalent levels). Directionality is determined by the combined criteria of the laminar patterns of the axon terminals as well as the cells of origins and has been used to construct models of the visual system, which reveals a strict hierarchical organization (Felleman and Van Essen, 1991; Hilgetag et al., 1996a). However, these models are indeterminate partly because we have no indication of the distance separating adjacent levels. Here we have attempted to determine a graded parameter describing the anatomical relationship of interconnected areas. We have investigated whether the precise percentage of labeled supragranular layer neurons (SLN%) in each afferent area after injection in either visual areas V1 or V4 determines its hierarchical position in the model. This shows that pathway directionality in the Felleman and Van Essen model is characterized by a range of SLN% values. The one exception is the projection of the frontal eye field to area V4, which resembles a feedforward projection. Individual areal differences in SLN% values are highly significant, and the number of hierarchical steps separating a target area from a source area is found to be tightly correlated to SLN%. The present results show that the hierarchical rank of each afferent area is reliably indicated by SLN%, and therefore this constitutes a graded parameter that is related to hierarchical distance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of cortical hierarchies with continuous scales and ranges

Although information flow in the neocortex has an apparent hierarchical organization, there is much ambiguity with respect to the definition of such a hierarchy, particularly in higher cortical regions. This ambiguity has been addressed by utilizing observable anatomical criteria, based upon tract tracing experiments, to constrain the definition of hierarchy [Felleman D.J. and van Essen D.C., 1...

متن کامل

Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey.

Local GABAergic connections are undoubtedly important for the operation of cerebral cortex, including the tuning of receptive field properties of visual cortical neurons. In order to begin to correlate specific configurations of GABAergic networks with particular receptive field properties, we examined the arrangement of GABAergic neurons projecting to foci in compartments of known functional s...

متن کامل

Visual and Motor Connectivity and the Distribution of Calcium-Binding Proteins in Macaque Frontal Eye Field: Implications for Saccade Target Selection

The frontal eye field (FEF) contributes to directing visual attention and saccadic eye movement through intrinsic processing, interactions with extrastriate visual cortical areas (e.g., V4), and projections to subcortical structures (e.g., superior colliculus, SC). Several models have been proposed to describe the relationship between the allocation of visual attention and the production of sac...

متن کامل

Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys.

We measured the timing, areal distribution, and laminar profile of fast, wavelength-insensitive and slower, wavelength-sensitive responses in V1 and extrastriate areas, using laminar current-source density analysis in awake macaque monkeys. There were 3 main findings. 1) We confirmed previously reported significant ventral-dorsal stream latency lags at the level of V4 (V4 mean = 38.7 ms vs. mid...

متن کامل

The projection from V1 to extrastriate area 21a: a second patchy efferent pathway colocalizes with the CO blob columns in cat visual cortex.

The different patchy organizations of neurons projecting from primary visual cortex (area 17) to the various extrastriate areas may contribute to functional differences in the output to each of these areas. The pattern of neurons projecting to extrastriate area 21a was examined using large injections of retrograde tracers and compared to the pattern shown by neurons projecting to the lateral su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 2000